Total Synthesis of Spirastrellolide F Methyl Ester

Fürstner et al. ACIE 2009, 48, 9940 and 9946.

Marija Manojlović
Wipf Group Current Literature Meeting
12-26-2009

Spirastrellolides


```
A: R = R' = X = Z = H,

Y = CI, \Delta^{15,16}

B: R = R' = X = Y = Z = H

C: R = R' = X = Y = H,

Z = OH

D: R = R' = Z = H,

X = Y = CI, \Delta^{15,16}

E: R = R' = X = Y = Z = H,

\Delta^{15,16}

F: R = R' = X = Z = H,

Y = CI

G: R = X = Z = H, Y = CI,

R' = Me, \Delta^{15,16}
```


Spirastrella coccinea

- Spirastrellolide A was isolated from the marine sponge *Spirastrella coccinea* in 2003, followed by B-G in 2007
- Methyl esters showed uniformly strong activity and an unusual phenotypic response in a cell-based antimitotic assay (against breast cancer MDF-7 cells).
- Potent (IC_{50} = 1 nM) and selective inhibitors of Ser/Thr protein phosphatase 2A causing premature cell entry into mitosis from the S-phase
- Other PP2A inhibitors: fostriecin, calyculin A, okadaic acid.

Spirastrellolide structural uncertainties

Spirastrellolide A (2003)
Originally proposed structure

Spirastrellolide A (2004) Revised structure (ROESY) Regions of unknown relative stereochemistry:

C3-C7 (A) C9-C24 (BC) C27-C36 (DEF) C46

- Possible 16 diastereoisomers were synthetic targets until the X-ray of the Spirastrellolide B derivative was obtained (2006)
- The stereochemistry of C46 was determined in 2007 by the isolation of the cleaved side-chain fragment and its transformation to dimethylmalate.

JACS **2003**, 125, 5296. OL **2004**, 6, 2607. JACS **2007**, 129, 508. JOC **2007**, 72, 9842.

Spirastrellolide Synthetic Considerations

- Rethrosynthetic analyses are highly dictated by previous structural uncertainties
- ABC "southern hemisphere" fragments were synthesized first by several groups
- Following final structure assignment two total synthesis were published so far: Paterson's Spirastrellolide A (2008) and Fürstner's Spirastrellolide F (2009)

Synthesis of Southern Hemisphere Domain

Nat. Prod. Rep. 2009, 26, 865.

Synthesis of Southern Hemisphere Domain

Synthesis of Northern Hemisphere Domain

Fürstner, 2006

Forsyth, 2006

Synthesis of Northern Hemisphere Domain

Paterson 1st Generation Approach, 2005

Paterson Final Approach, 2006, 2008

Paterson's Synthesis of Spirastrellolide A

ACIE **2008**, 47, 3016. ACIE **2008**, 47, 3021.

Scheme 1. Summary of our "first-generation" approach to the spirastrellolides. [10–13] The formation of the C25–C26 bond was not only attempted by ring-closing metathesis (RCM) but also in an intermolecular setting through olefin cross-metathesis. Bn = benzyl.

- -RCM has been attempted on >30 different precursors!!! ⇒Chlorinated bis(spiroketal) is too bulky
- -DEF fragment is sensitive and poised to furan formation ⇒Southern half should be modified
- Model system for the alkyl-Suzuki reaction needs to be investigated.

Fürstner's Synthesis of Spirastrellolide F Model Studies on Suzuki Coupling

Conclusions

- -The first total synthesis of the potent mitotic inhibitor spirastrellolide F methyl ester has been accomplished in a highly convergent manner.
- -Alkyl-suzuki coupling and Yamaguchi lactonization were used to stitch north and south hemisphere fragments together after numerous RCM attempts failed.
- -The synthesis include numerous highly diastereoselective steps, including substrate controlled late stage hydrogenization to install C24 stereocenter.
- -Further chemical and biological studies of this molecule are underway in the Fürstner group.